
Incremental Maximum Flows for Fast Envelope Computation

Nicola Muscettola

NASA Ames Research Center
Moffett Field, CA 94035
 mus@email.arc.nasa.gov

Abstract
Resource envelopes provide the tightest exact bounds on the
resource consumption and production caused by all possible
instantiations of a temporally flexible plan. We present a
new algorithm that computes an envelope in O(Maxflow(n,
m, U)) where n, m and U measure the size of the flexible
plan. This is an O(n) improvement on the best envelope
algorithm known so far and makes envelopes more
amenable to practical use in scheduling algorithms. The
reduction in complexity depends on the fact that when the
algorithm computes the constant segment i of the envelope
it makes full reuse of the maximum flow that was computed
in order to obtain segment i-1.

Resource Envelopes

The execution of plans greatly benefits from temporal
flexibility. Fixed-time plans are brittle and may require
extensive replanning due to execution uncertainty.
Moreover, when plans must deal with uncontrollable
exogenous events (Morris et al., 2001) temporal flexibility
cannot be avoided. However, effective algorithms to build
temporally flexible plans are rare, especially when
activities produce or consume variable amounts of resource
capacity. A major obstacle is the difficulty of assessing the
resource needs across all possible plan executions.
Methods are available to compute resource consumption
bounds (Laborie, 2001; Muscettola, 2002). In particular,
(Muscettola, 2002) proposes a polynomial algorithm to
compute a resource envelope, the tightest of these bounds.
By being the tightest possible, resource envelopes can
potentially save an exponential amount of search (through
early backtracking and solution detection) when compared
to using looser bounds. Also, methods that compute
resource envelopes identify maximally matched sets of
resource consumer/producers that balance each other for
any plan execution. This and other structural information
could be crucial in minimizing the search space and
suggesting effective scheduling heuristics, potentially
enabling new classes of highly efficient schedulers.
However, preliminary studies on schedulers using
envelopes appear not to show advantages with respect to
more traditional heuristic methods based on fixed-time
resource profiles (Pollicella et al., 2003). When compared
to traditional fixed-time profiling methods, it is critical to
balance the increased computation cost with the extraction
of more structural problem information from the envelope

than backtrack/termination tests and maximum resource
contention intervals. Making the trade-off advantageous
requires two complementary approaches. The first reduces
the cost of computing an envelope; the second devises new
envelope analysis methods to extract useful heuristics.
In this paper we address the problem of cost reduction. The
fastest known resource envelope algorithm (Muscettola,
2002) computes all piecewise-constant segments of the
envelope through as many as 2n stages, where n is the
number of events in the flexible plan. Each stage computes
a maximum flow using some maximum flow algorithm.
The worst case complexity is O(n Maxflow(n,m,U)) where
m is the number of temporal constraints between activities
in the plan, U is the maximum level of resource production
or consumption at some activity, and Maxflow(n, m, U) is
the asymptotic cost of the maximum flow algorithm.
This staged method, however, can be significantly
improved since at each stage it recomputes the needed
maximum flow completely from scratch. This suggests
using an incremental flow method. Starting from the
maximum flow at one stage, this method computes the
maximum flow at the next stage by minimally reducing
flow when deleting nodes and edges, and by minimally
increasing flow when adding new nodes and edges (Kumar,
2003). However, without appropriately ordering flow
reductions and increases, the asymptotic complexity may
not improve (at it appears to be the case in (Kumar, 2003)).
In this paper we introduce an incremental method that
provably computes an envelope in O(Maxflow(n, m, U))
for a large class of maximum flow algorithms. This
reduction of complexity is significant. Experimental
analysis has shown that the practical cost of maximum flow
is usually as low as O (n 1.5) (Ahuja et al., 1993). This
compares well with O(n log n), the cost of building
resource profiles for fixed time schedules. This paper is
organized as follows. We first give a succinct introduction
to the resource envelope problem and the staged envelope
algorithm in (Muscettola, 2002). Next we present the new
incremental algorithm identifying all sources of
performance improvements. We then prove the complexity
result and conclude by discussing future work.

Staged Computation of Envelopes

In this section we introduce the essential information on the
envelope problem and the staged algorithm that solves it.
For a complete discussion, see (Muscettola, 2002).

Figure 1 shows an activity network with resource
allocations. The network has two time variables per activity,
a start event and an end event (e.g., e1s and e1e for activity
A1), a non-negative flexible activity duration link (e.g., [2,
5] for activity A1), and flexible separation links between
events (e.g., [0, 4] from e3e to e4s). Two additional events
Ts, and Te define a time horizon within which all events
occur.
Time origin, events and links constitute a Simple Temporal
Network. To describe resource production and
consumption each event has also an allocation value (e.g.,
r31 for event e3s), a numeric weight that represents the
amount of resource allocated when the event occurs. We
will assume that all allocations refer to a single, multi-
capacity resource. The extension to multiple resources is
straightforward. If the allocation is negative an event e−−−− is a
consumer, if it is positive e++++ is a producer. We assume that
the temporal constraints are consistent which means that for
any pair of events the shortest path |e1e2| from e1 to e2 is
well defined. Each event e can occur within its time bound,
between the earliest time et(e) = −−−−|eTs| and the latest time
lt(e) = |Tse|. The triangular inequality |e1e3| ≤≤≤≤ |e1e2| + |e2e3|
holds for any three events e1, e2 and e3.

Figure 1: An activity network with resource allocations

The anti-precedence graph, Aprec, is a graph containing a
path between any two events e1 and e2 such that |e1 e2| ≤≤≤≤ 0.
Figure 2 depicts an anti-precedence graph of the network in
Figure 1 with each event labeled with its time bound and
resource allocation.
We can now formally define a resource envelope. For any
subset of events A, the resource level increment of A is
∆∆∆∆(A) = 0 if A = ∅∅∅∅, and ∆∆∆∆(A) = ΣΣΣΣe∈∈∈∈A c(e) if A ≠≠≠≠ ∅∅∅∅. If S is
the set of all possible consistent time instantiations for all
events and t is a time within the time horizon, the resource
level at time t for a specific time instantiation s ∈∈∈∈ S is
Ls(t) = ∆∆∆∆(Es(t)). Here Es(t) is the set of events e which
occur at or before t in s. The maximum resource envelope
is Lmax(t) = maxs∈∈∈∈S Ls(t) and the minimum resource
envelope is Lmin(t) = mins∈∈∈∈S Ls(t). Since Lmin can be
computed with obvious term substitution on the method
that computes Lmax, we only focus on Lmax.
To compute the resource envelope at time t we partition all
events into three sets depending on the position of their
time bound relative to t: 1) the closed events Ct that must
occur before or at t, i.e., such that that lt(e) ≤≤≤≤ t; 2) the

pending events Rt that can occur before, at or after t, i.e.,
such that (e) ≤≤≤≤ t < lt(e); and 3) the open events Ot that must
occur strictly after t, i.e., such that et(e) > t.
Any resource level increment Ls(t) will always include the
contribution of all events in Ct and none of those in Ot but
can include only some subset of events in Rt, i.e., only
those that are scheduled before t in s. It is possible to show
that this subset must be a predecessor set P⊆⊆⊆⊆Rt such that if
e∈∈∈∈P and e’ follows e in Aprec, then e’∈∈∈∈P. We call
Pmax(Rt) the (possibly empty) predecessor set with
maximum non-negative resource level increment.
The fundamental result reported in (Muscettola, 2002) is
that Lmax(t) can be determined from the following equation.

Equation 1: Lmax(t) = ∆∆∆∆(Ct)+∆∆∆∆(Pmax(Rt))

Figure 3: Anti-precedence graph with time/resource usage

The cost of computing an envelope depends on the cost of
computing Pmax(Rt). We can compute Pmax(Rt) by solving a
maximum flow problem on an auxiliary flow network
F F F F (Rt), the resource increment flow network for Rt.
The formal definition of a resource increment flow network
can be found in (Muscettola, 2002). As an example, Figure
2 gives F F F F (R4) for the activity network in Figure 1. The
network has a node for each event in R4, an infinite
capacity flow edge between two events for each edge in
Aprec (see Figure 2), an edge from the source σσσσ to a
producer with capacity equal to the producer’s allocation,
and an edge from a consumer to the sink ττττ with capacity
equal to the opposite of the consumer’s allocation.
A complete discussion of maximum flow algorithms can be
found in (Cormen, Leiserson and Rivest, 1990). Here we
only highlight a few concepts that we will use in the
following. A flow is a function f(e1, e2) of pair of events in
FFFF (Rt) that is skew-symmetric, i.e., f(e2, e1) = −−−− f(e1, e2), has

 <[5, 17], -4>

<[6, 13], 2>

<[1, 4], −4>
 <[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s
e4e

Figure 2: A resource increment flow network

[1, 10]

<e2e, 2>

A1

A2

A3

A4

<e1s, −4> <e1e, −4>

<e2s, 3>

<e4s, 4>

<e4e, −4>

<e3s, −2> <e3e, 3>

Ts Te [30, 30]

[1, 4]

[2, 5]

[-2, 3]

[1, 5]

[2, 3]

[0, 4]

[-1, 4]

[0, +∞]

[0, +∞]

[1, 1]

[0, 6]

ττττ

3

3

4

+∞

+∞

+∞

+∞

e1e

e2s

e4s

e3e

e3s

4

2
σσσσττττ

3

3

4

+∞

+∞

+∞

+∞

e1e

e2s

e4s

e3e

e3s

4

2
σσσσ

a value no greater than the capacity of edge e1→→→→e2
(assuming capacity zero if the edge is not in FFFF (Rt)), and is
balanced, i.e., the sum of all flows entering an event must
be zero. A pre-flow is a function defined similarly but that
relaxes the balance constraint by allowing the sum of
preflows entering a node to be positive. The total network
flow is defined as Σe∈Rt f(σσσσ, e) = Σe∈Rt f(e, ττττ). The
maximum flow of a network is a flow function fmax such
that the total network flow is maximum.
A fundamental concept in the theory of flows is the
residual network, a graph with an edge for each pair of
nodes in FFFF (Rt) with positive residual capacity, i.e., the
difference between edge capacity and flow. Each residual
network edge has capacity equal to the residual capacity.
An augmenting path is a path connecting σσσσ to ττττ in the
residual network. The existence of an augmenting path
indicates that additional flow can be pushed from σσσσ to ττττ.
Alternatively, the lack of an augmenting path indicates that
a flow is maximum.
We can compute Pmax(Rt) according to the next theorem.

Theorem 2: (Muscettola 2002) Pmax(Rt) is the (possibly
empty) set of events that are reachable from the source σσσσ
in the residual network of some fmax of FFFF (Rt).

From Equation 1 and Theorem 2 (Muscettola, 2002)
derives a staged envelope algorithm as follows. Consider
the 2n times ti corresponding to the earliest and latest times
for all events. Since the envelope level can only change at
one of these times, the algorithm computes a different level
for each of them. At a particular ti the algorithm determines
its closed and pending event sets Ci and Ri, builds F F F F (Ri),
solves a maximum flow over it, determines Pmax(Ri)
according to Theorem 2, and computes Lmax(ti) according
to Equation 1. It is easy to see that the worst-case time
complexity of this algorithm is O(n Maxflow(n, m, U)).

Incremental Computation of Envelopes

In the previously described staged envelope algorithm
flows are recomputed from scratch for each FFFF (Ri).
Assuming that the times ti are sorted in increasing order, in
To reduce cost, we can try and reuse as much as possible of
the maximum flow computation performed on FFFF (Ri-1). At
time ti the set of pending events can undergo two
modifications. First, the events δδδδCi = Ri-1 – Ri move from
Ri-1 to Ci. These are events e such that ti = lt(e). Second,
the events δδδδRi = Ri −−−− Ri-1 move from Oi-1 to Ri. These are
the events e such that ti = et(e). For example, consider the
activity network in Figure 1 and the process through which
R3 is transformed into R4. This is described in Figure 4
where the grayed part of the network is deleted and the
emphasized part of the network is added at time 4. In
particular, we have δδδδC4 = {e1s} and δδδδR4 = {e2s}. For
completeness, we note that
FFFF (δδδδC4) consists of node e1s and edge e1s→→→→ττττ while FFFF (δδδδR4)
consists of node e2s and edge σ→→→→e2s. All other added and
deleted edges are connectives between FFFF (R4−−−− δδδδC4) and FFFF

(δδδδC4) (edges e1e→→→→e1s and e3s→→→→e1s) and between FFFF (δδδδR4)
and FFFF (R4−−−− δδδδC4) (e2s→→→→e1e).
The sets δδδδCi and δδδδRi satisfy the following fundamental
properties.

Lemma 3: δδδδCi is a predecessor set contained in Ri. δδδδRi is
the complement of predecessor set Ri-1 in Ri.
Proof: We only give the proof for δδδδCi since the one for δδδδRi
is analogous. Consider a pair of events e1 ∈∈∈∈ δδδδ(Ci) and e2 ∈∈∈∈
Ri-1−−−−δδδδCi. From the definition of δδδδCi we have lt(e1) = ti and
lt(e2) ≥≥≥≥ ti+1. From the triangular inequality lt(e2) ≤≤≤≤ lt(e1) ++++
|e1 e2| we deduce |e1 e2| ≥ lt(e2) −−−− lt(e1) ≥≥≥≥ ti ++++ 1 – ti = 1 >
0.!!!!

Lemma 3 determines what flow edges are eliminated when
δδδδCi is deleted and what are added when δδδδRi is added. In
particular, we can only delete edges that enter events in δδδδCi
or go from δδδδCi to ττττ. Similarly, we can only add edges that
exit events in δδδδRi or go from σσσσ to δδδδRi. Unlike previous
proposals for incremental envelope calculation (Kumar,
2003), our methods relies on events and edges exiting and
entering the current flow network in a well defined order.
This is the primary key to reducing complexity in our

incremental envelope algorithm.
Directly related to Lemma 3 is the possibility of computing
the maximum flow of FFFF (Ri) by incrementally modifying
the flow of FFFF (Ri-1), reusing both flow values and
intermediate data structures across successive invocations
of a maximum flow algorithm. We prove that our flow
modification operators guarantee the optimality at each
intermediate flow. Maintaining maximality of intermediate
flows and reusing data structures across flows are keys to
reduce complexity for different kinds of maximum flow
algorithms.
A final factor is minimizing the size of each intermediate
flow network. We will show that as soon as the weight of
an intermediate Pmax is used in the envelope calculation, F
(Pmax) and all of its connecting edges can be safely
eliminated from further consideration. This reduces flow
network size and additionally contributes to cost reduction.

Flow Modification Networks
We now define the operators needed for the incremental
envelope algorithm. The philosophy of each operator is
similar to that used by the flow augmentation method in

σσσσττττ

3

3

4

+∞∞∞∞

+∞

+∞

+∞

e1e

e2s

e4s

e3e

e3s

4

2

+∞

+∞

e1s

4

σσσσττττ

3

3

4

+∞∞∞∞

+∞

+∞

+∞

e1e

e2s

e4s

e3e

e3s

4

2

+∞

+∞

e1s

4

ττττ

3

3

4

+∞∞∞∞

+∞

+∞

+∞

e1e

e2s

e4s

e3e

e3s

4

2

+∞

+∞

e1s

4

Figure 4: Incremental modification of a resource flow network

maximum flow theory. However, we use this method more
generally not only to augment flow but also to shift flow
around the network and to reduce flow. The general idea is
the following. Given a flow network FFFF and one of its
maximum flows f, an operator first defines an auxiliary
flow transformation network FFFFT, then finds one of its
maximum flows fT, and finally produces a flow fnew = f + fT.
Each FFFFT consists of selected edges in the residual network
of FFFF for f. Since the properties of flows are preserved when
adding a flow of a residual network to the flow that
originated the residual network, fnew is also a flow for
network FFFF.
Consider now the resource increment flow network FFFF (Ri-1)
at stage i-1 and assume that the set of new closed events at
stage i δδδδCi is not empty. At stage i all events in δδδδCi and all
of its incoming and outgoing edges will be deleted. This
also means that any flow that at the end of stage i-1 enters
δδδδCi will necessarily have to be zeroed, i.e., pushed back
into FFFF (Ri-1). The value of this flow is the sum of the
residual capacities of all edges e1→→→→e2 where e1 ∈∈∈∈ δδδδCi and
e2∈∈∈∈ Ri-1−−−−δδδδCi. Once pushed back, this flow can follow two
routes. The first reaches ττττ to fill up some non-saturated
exiting edges of FFFF (Ri-1−−−−δδδδCi). The second reverses all the
way to σσσσ because it cannot find any way to exit
FFFF (Ri-1−−−−δδδδCi) through its sink. We call this flow push-back
operation a flow contraction. The first flow route
corresponds to a flow shift and the second one is a flow
reduction. For example, consider the network in Figure 4.
Assume that at t=3 it is fmax(e1s, ττττ) = 4, fmax(e1e, ττττ) = 1 and
fmax(e3e, ττττ) = 2. At t=3 the elimination of e1s requires
pushing back 4 units of flow. However, note that three units
can still reach ττττ by being shifted to e1e→→→→ττττ. Only one unit of
flow needs to be pushed back to σσσσ. If we did not shift (as in
(Kumar, 2003)), three additional units of flow would have
to be pushed again from σσσσ to ττττ to ensure flow maximality.
Assume now that at stage i there is also a non-empty set
δδδδRi of new pending events. Augmenting FFFF (Ri-1−−−−δδδδCi) with
the part of the resource increment flow network pertaining
to δδδδRi yields FFFF (Ri). Assume now that FFFF (Ri-1−−−−δδδδCi) is
traversed by the flow resulting from flow contraction. Even
if this flow is maximum for FFFF (Ri-1 −−−− δδδδCi), it may not be
maximum for FFFF Ri) since additional flow could be pushed
through edges σσσσ→→→→e with e∈∈∈∈δδδδRi. We call this flow push-
forward operation a flow expansion. If at every stage of
flow contraction and flow expansion we guarantee flow
maximality, we will obtain a maximum flow for FFFF (Rt(i))
that moves a minimal amount of flow.

Flow Contraction
Let us call fmax,i-1 the maximum flow for FFFF (Ri-1). In our
discussion we ignore the structure of the flow sub-network
for δδδδCi by using an auxiliary flow network FFFFi-1 that
redirects all flow entering δδδδCi into the sink ττττ. Formally, to
obtain FFFFi-1 we first delete from FFFF (Ri) all events in δδδδCi,
together with all their incoming and outgoing flow edges.
We then add an auxiliary edge e1→→→→ττττ for each set of
component edges e1→→→→e2 in F(Ri-1) such that e1∈∈∈∈ Ri-1−−−−δδδδCi
and e2∈∈∈∈δδδδCi. The capacity of the auxiliary edge e1→→→→ττττ is the
sum of all component edge flows fmax,i-1(e1, e2). We call

fmax,,i-1 a function over the edges of FFFFi-1 where fmax,i-1(e1,e2)
is equal to fmax,i-1(e1,e2) if e1→→→→e2 also belongs to FFFF (Ri-1),
and fmax,i-1(e1,ττττ) is equal to the edge’s capacity if e1→→→→ττττ is
one of the auxiliary flow edges. It is easy to see that fmax,i-1
is a maximum flow for Fi-1. We call Resi-1 the residual
network of FFFFi-1 for fmax,i-1.
We define a flow shift network Shifti as follows.

Flow shift network: Shifti is a flow network with the same
intermediate events of Resi-1. Shifti has a flow edges e1→→→→e2
equal to a corresponding one in Resi-1 if e1∉∉∉∉{σσσσ,ττττ} and e2≠σσσσ.
Finally, for each edge τ→e in Resi-1 such that e→τ is an
auxiliary flow edge in FFFFi-1, Shifti has a corresponding edge
σ→e of the same capacity.

Let us now call call Res(Shifti) the residual network of Fi-1
for f’ = fmax,i + fmax,shift,i. We define a flow reduction
network Reducei as follows.

Flow reduction network: Reducei is a flow network with
the same nodes as Res(Shifti) and edges e1→→→→e2 identical to
Res(Shifti) if one of the following three conditions is
satisfied:
1) e2≠ττττ;
2) e1≠σσσσ;
3) e1=σσσσ and the edge σσσσ→→→→e2 in Shifti originates from an

auxiliary flow edge for FFFFi-1.

Using Shifti and Reducei, we define the Flow_Contraction
operator needed by the incremental envelope algorithm.

Flow_Contraction(FFFF (Ri-1) , fmax,i-1, δδδδCi, Aprec):

1) Compute a maximum flow max,shift,i for Shifti;
2) Compute a maximum flow fmax,red,i for Reducei;
3) Return fcontr,i=fmax,i+ fmax,shift,i+fmax,red,i

We now prove that the operator keeps the flow maximum.

Lemma 4: The flow f’ = fmax,i + fmax,shift,i is maximum for FFFFi-

1..
Proof: f’ is a flow of FFFFi-1. It is also maximum since by
construction of Shifti it is fmax.shift,i(σσσσ, e) = 0. Therefore f’(σσσσ,
e) = fmax,i-1(σσσσ, e) and therefore f’ is also maximum for FFFFi-1.

Lemma 5: fcontr,i is a flow for FFFF (Ri-1−−−−δδδδCi).
Proof: fcontr,i is a flow for FFFFi-1. For it to be a flow for
FFFF (Ri-1−−−−δδδδCi) it must be fcontr,i(e, ττττ)=0 if e→→→→ττττ is an auxiliary
edge. If it were fcontr,i(e, ττττ) > 0 for an auxiliary edge, by
using the flow conservation constraint we could show that
there must be a path from σσσσ to ττττ, passing through e→→→→ττττ,
with all edges having positive flow. Therefore, there must
be a flow-reducing path from ττττ to σσσσ in the corresponding
residual network. Such path is an augmenting path in the
residual network of Reducei for flow fmax,red,i, which
contradicts the maximality of fmax,red,i.

Theorem 6: fcontr,i is a maximum flow for FFFF (Ri-1 −−−− δδδδCi).

Proof: This is clearly true if fmax,red,i is a null flow since f’
is maximum. If fmax,red,i is not null, assume that fcontr,i is not
maximum. This yields an augmenting path from σσσσ to ττττ in FFFF
(Ri-1 −−−− δδδδCi) for fcontr,i. Since fmax,i is optimal, such path
could only have appeared after the computation of fmax,shift,i.
Since f’ is maximum for FFFFi-1, there must be at least one
edge e1→→→→e2 on the augmenting path that does not belong to
the residual network of FFFFi-1 for f’ while the suffix path from
e2 to ττττ has positive residual capacity in Shifti for fmax,shift,i.
A positive residual for e1→→→→e2 implies that flow reduction
pushed flow in the opposite direction, i.e., fmax,red,i(e2, e1) >
0. Consider the last such edge in the augmenting path. By
backtracing its flow we find a positive flow path for fmax,red,i
from σσσσ to e2. This can only happen if the capacity of the
path in Reducei is positive, which is equivalent to a prefix
path with positive residual capacity in Shifti for fmax,shift,i.
Tying the prefix and postfix at e2 yields an augmenting path
in Shifti for fmax,shift,i, impossible since fmax,shift,i is
maximum.!!!!

Flow Expansion
The completion of stage i of the algorithm requires now to
incorporate the event set δδδδRi to yield Ri and allow the
computation of Pmax,i = Pmax(Ri). Again, we define an
incremental operation on an incremental residual flow
network, the flow expansion network. The network is built
on the residual network of FFFF (Ri-1 −−−− δδδδCi) for flow fcontr,i. We
call this residual network Res(Contri).

Flow expansion network: Expandi is a flow network with
the intermediate events Ri. Expandi all flow edges e1→→→→e2
in Res(Contri), all flow edges in FFFF (δδδδRi) and an infinite
capacity edge e1→→→→e2 for each anti-precedence edge
between e1 ∈δδδδRi and e2 ∈Ri-1−−−−δδδδCi.

Note that by construction Expandi is the residual network
in FFFF (Ri) for fcontr,i. We now define the final operator
needed by the incremental envelope algorithm,
Flow_Expansion.

Flow_Expansion(FFFF (Ri-1−−−−δδδδCi), fcontr,i, δδδδRi, Aprec):

1) Compute a maximum flow fmax,exp,i for Expandi;
2) Return fmax,i= fcontr,i + fmax,exp,i

Theorem 7: fmax,i computed by Flow_Expansion is
maximum for FFFF (Ri).
Proof: fmax,i is clearly a flow for FFFF (Ri). Moreover, fmax,exp,i
is maximum for Expandi and therefore there is no
augmenting path in the corresponding residual network.
The maximality of fmax,i follows from the identity between
the residual network of Expandi for fmax,exp,i and the
residual network of FFFF (Ri) for fmax,i.!!!!

Flow Separation for Pmax
We can achieve further performance improvements by
minimizing the number of nodes and flow edges that need
to be considered at each stage. During stage i two Pmax are
computed: Pmax,contr,i after Flow_Contractioni and Pmax,i after

Flow_Expansioni. We know that each Pmax is a predecessor
set (i.e., it contains all of its successors in the anti-
precedence graph), it is flow isolated (i.e., for each pair of
events e1∈∈∈∈Pmax and e2 ∈∈∈∈ PC

max, fmax(e1, e2) = 0 and fmax(e2,
e1) = 0) and has all exit edges saturated (i.e., fmax(e, ττττ) = c(e,
ττττ) for all e∈∈∈∈Pmax) (Muscettola, 2002). This will allow us to
prove that FFFF (Pmax,i-1) can be ignored during the
computation of Flow_Contractioni and FFFF (Pmax,contr,i) can be
ignored during computation of Flow_Expansioni.
Let us consider each maximum flow operation executed at
stage i. The first is flow shifting. Note that by construction,
the Pmax of FFFFi-1, Pmax,i-1, contains the events in Pmax,i-1 −−−− δδδδCi.
Pmax,i-1 is a predecessor set since δδδδCi. contains events at the
bottom of the anti-precedence graph for FFFF (Ri-1). However,
due to the additional links e→→→→ττττ the value of the positive
residual of Pmax,i-1 is equal to ∆(Pmax,i-1). Pnax, i-1 is still flow
insulated and has all exit edges saturated. Assume that flow
shifting pumped flow to reach an event e’∈∈∈∈Pmax,i-1. In order
for at least part of such flow to reach ττττ there must be a
postfix augmenting path that reaches τ from e’. But this is
impossible since Pmax,i-1 is a predecessor set, all postfix
paths must remain inside Pmax,i-1, and all exit edges from
Pmax,i-1 to ττττ are saturated. Therefore, any maximum flow
algorithm pushing flows that searches for augmenting paths
can avoid doing so in Pmax,i-1 and any excess flow pumped
into events of Pmax,i that can achieve ττττ will have to be
pushed back from Pmax,i-1 to PC

max,,i-1. Therefore we can
ignore Pmax,i-1 during flow shifting.
After flow shifting the maximum predecessor set is still
Pmax,i-1 since flow shifting simply produces a different
maximum flow for FFFFi-1 and Pmax,i-1 is independent from the
specific flow instance (Muscettola, 2002).
Considering now flow reduction, fmax,red,i this can be
computed by simply backtracing flow in FFFFi-1. Because of
the flow insulation of Pmax,,i-1, this backtracing is either
performed exclusively over events in PC

max, i-1 = PC
max,i-1−−−−

δδδδCi or is confined within the events in Pmax,i.1 = Pmax,i-1 −−−−
δδδδCi. Note that since after flow reduction all auxiliary edges
must have zero flow, the producers’ residual of Pmax,i-1 after
flow contraction must be equal to ∆(Pmax,i-1 −−−− δδδδCi).
Finally, we can use a similar argument to the one used for
flow shifting to show that Flow_Expansioni can be
performed entirely over F(PC

max,contr,i), therefore ignoring
Pmax,,contr,i.

Incremental Computation of Lmax
We are now ready to derive a recursive equations for the
incremental calculation of Lmax(t) by transforming
Equation 1 through the application of flow reduction and
expansion.

From the discussion on flow separation, we know that, after
Flow_Contractioni-1, Pmax,contr,I =(Pmax(Ri-1) −−−− δδδδCi) ∪∪∪∪
Pmax(P

c
max(Ri-1) −−−− δδδδCi). After Flow_Expansioni,because of

flow separation, we have Pmax,i = Pmax,contr,i ∪ Pmax(P
C

contr,i
∪∪∪∪ δδδδRi).

Theorem 8: Lmax(t) satisfies this recursive equation:
if t = t1
 Lmax(t) = ∆∆∆∆(C1) + ∆∆∆∆(Pmax(R1))
 if t = ti and i >1
 Lmax(t) = Lmax(ti-1) ++++ i
 ∆∆∆∆(δδδδCi ∩∩∩∩ PC

max(Ri-1)) ++++ ii
 ∆∆∆∆(Pmax(P

c
max(Ri-1) −−−− δδδδCi)) ++++ iii

 ∆∆∆∆(Pmax(δδδδRi ∪∪∪∪ Pc
max(P

c
max(Ri-1−−−− δδδδCi))); iv

if t≠≠≠≠ti, then
 Lmax(t) = Lmax(t-1).
Proof: Lmax(t) only changes when Rt changes, i.e., at a time
ti. Let us consider in turn the application of
Flow_Contractioni and Flow_Expansioni.
a) Flow_Contractioni: the level after flow contraction,

Lmax,contr(ti) is the weight of the closed events after
contraction and of Pmax,contr,i. Since new events at time
ti are only closed during flow contraction and Ci and
Pmax,contr,i are disjoint, Lmax,contr(ti) = ∆∆∆∆(Ci-1 ∪∪∪∪ δδδδCi ∪∪∪∪
Pmax,contr,i) = ∆∆∆∆(Ci-1 ∪∪∪∪ δδδδCi ∪∪∪∪ (Pmax(Ri-1) −−−− δδδδCi) ∪∪∪∪
Pmax(P

c
max(Ri-1) −−−− δδδδCi)). Since for any two sets A and

B it is A ∪∪∪∪ (B – A) = B ∪∪∪∪ (A – B), with B and (A–B)
being disjoint sets, we have δδδδCi ∪∪∪∪ (Pmax(Ri-1) −−−− δδδδCi) =
Pmax(Ri-1) ∪∪∪∪ (δδδδCi −−−− Pmax(Ri-1)). Since δδδδCi ⊆⊆⊆⊆ Ri-1 =
Pmax(Ri-1) ∪∪∪∪ PC

max(Ri-1), it is easy to see that δδδδCi −−−−
Pmax(Ri-1) = δδδδCi ∩∩∩∩ PC

max(Ri-1). This yields Lmax,contr(ti)
= Lmax(ti-1) + ∆∆∆∆(δδδδCi ∩∩∩∩ PC

max(Ri-1)) + ∆∆∆∆(Pmax(P
c
max(Ri-1)

−−−− δδδδ(Ci))), i.e., lines i, ii and iii in the theorem’s
statement.

b) Flow_Expansioni: the only new increment comes from
set Pmax(P

C
max,contr,i ∪∪∪∪ δδδδRi) = Pmax(P

C
max(Ri-1 - δδδδCi) ∪∪∪∪

δδδδRi) which yields line iv in the theorem’s statement.

Algorithm Time Complexity Complexity Key
Labeling O(nmU) Total pushable

flow
Capacity scaling O(nm logU) Total pushable

flow
Successive
shortest paths

O(n2m) Shortest distance
to ττττ

Generic
preflow-push

O(n2m) Distance label

FIFO
reflow-push

O(n3) Distance label

Table 1: Complexity of maximum flow algorithms

Figure 5 shows the pseudocode of the algorithm. The
functions Flow_Contraction and Flow_Expansion receive as
arguments the current flow network Fcur,which includes the
current maximum flow, the incremental set of events that
need to be added/deleted Ecur.{earliest,latest}, and the
anti-precedence graph Aprec(N) for the set of all events in
the plan N. Aprec carries the topological information
needed to expand the flow network.
Given the current flow network and its maximum flow both
stored in Fcur, Extract_P_max returns both its maximum
increment predecessor set Pmax and the restricted network
and flow resulting from the elimination of the Pmax.
Comparing with the formula for Lmax(ti) described by

Theorem 8, line 12 in the algorithm computes i+ii, line 15
adds iii and line 18 adds iv. Note that the algorithm is
actually more of a method that can be implemented in
different ways depending of which maximum flow
algorithm is used in Flow_Contraction and
Flow_Expansion. As we shall see the worst-case time
complexity of the method is the same as that the maximum
flow algorithm used. We will also see that further
optimizations are possible when using specific algorithms
such as push-preflow methods.

Complexity Analysis

The complexity analysis of the incremental envelope
algorithm applies to a large number of maximum flow
algorithms used for Flow_Contraction and Flow_Expansion.
Each algorithm has a complexity key, i.e., a measurable
entity whose static properties or dynamic behavior during
its computations determines its time complexity. Table 1
(adapted from (Ahuja, Magnanti and Orlin, 1992)) reports
the time complexity and complexity key of several
maximum flow algorithms.
The Labeling and Capacity Scaling algorithms are based
on the original Ford-Fulkerson method. The complexity
depends on the strict monotonicity of the flow pushed at
each iteration of the algorithm and on the fact that the total
pushable flow is bound by nU where U is the maximum

Figure 5: Incremental envelope algorithm

Incremental_Resource_Envelope (N, Apred(N))
{ 1: E := { Group events in the input set N into entries Et with three

members: a time t and two lists earliest and latest. Event
e∈∈∈∈N is included in Et.earliest if et(e) = t and in Et.latest if
lt(e) = t. Sort the Et in increasing order of t. }

 2: Lmax := {<-∞∞∞∞, 0>} /* Maximum resource envelope. */
 3: tcur := 0; /* Current time */
 4: Lold := 0; /* Envelope level at previous iteration. */
 5: Lnew := 0; /* Envelope level at current iteration. */
 6: Pmax := ∅∅∅∅; /* Maximum increment predecessors.*/
 7: Fcur := ∅; /*Resource increment flow graph with associated

maximum flow */
 8: Ecur := ∅∅∅∅; /* Entry from E at tcur. */
 9: while (E is not empty)
10: {Ecur := pop(E);
11: tcur := Ecur.t;
12: Lnew := Lold + weight (intersection (Events(Fcur), Ecur.latest));
13: Fcur := Flow_Contraction (Fcur, Ecur.latest, Aprec(N));
14: <Pmax, Fcur> := Extract_P_Max (Fcur);
15: Lnew := Lnew ++++ weight (Pmax);
16: Fcur := Flow_Expansion (Fcur, Ecur.earliest, Aprec(N));
17: <Pmax, Fcur> := Extract_P_max (F);
18: Lnew := Lnew ++++ weight (Pmax);
19: Lmax := append (Lmax, <tcur, Lnew>);
20: Lold := Lnew;

 }
 return Lmax;
}

capacity of an edge σσσσ→→→→e or e→→→→ττττ. The successive shortest
paths class of algorithms is based on the original Edmonds-
Karp algorithm. The complexity depends on the fact that
flow is pushed through augmenting paths of monotonically
increasing length. The complexity key for this class of
algorithms is the shortest distance to ττττ for each event e. For
these algorithms it is crucial to demonstrate that the
distance function d(e) increases by at least one unit after
each iteration.
Finally, preflow-push algorithms such as generic preflow-
push and FIFO preflow-push (Goldberg and Tarjan, 1988)
maintain a distance labeling d(e). These algorithms use
purely local operations that push excess flow available at
node e1 through edges e1→→→→e2 such that d(e1) = d(e2) + 1.
When excess flow exists at some node and no such edge
exist, the node’s distance labeling is increased by the
minimum amount that re-establishes a one unit difference
in distance label over an edge. This allows more flow to be
pushed. The complexity of the algorithms depends on
creating a valid labeling at each iteration and on the fact
that for each node the distance labeling is monotonically
increasing up to 2n-1.
We now analyze the cumulative cost of computing all flows
over 2n stages respectively for fmax,shift,i, fmax,red,i and
fmax,exp,i. First note that at each stage fmax,red,i can be
computed by flow backtracing through a backwards depth
first search on the resource increment flow network. Since
this can cost up to O(m), the total cost of computing flow
reduction is O(nm) and is therefore smaller than the cost of
applying a regular maximum flow algorithm. Therefore we
focus on the cost for the cumulative fmax,shift,i and fmax,exp,i,

respectively Fshift = ΣΣΣΣi fmax,shift,i and Fexp = ΣΣΣΣi fmax,exp,i.

Lemma 9: Each of Fshift and Fexp is no greater than n U.
Proof: Consider Fshift (the argument is similar for Fexp). The
upper bound of the total capacity of the edges σσσσ→→→→e
entering Shifti is the total capacity of edges e−→ττττ with
e−−−−∈∈∈∈δδδδ(Ci). After iteration i all nodes in δδδδCi are eliminated
from further consideration, hence flow can go through each
σσσσ→→→→e only during iteration i. Therefore, the total flow is
upper bounded by Σi |δδδδCi| U = n U.!!!!

Note that the argument above does not hold for Fexp if
instead of using flow shifting the flow is simply reduced
and then expanded again (Kumar, 2003). In this case the
same flow could be pushed up to n times with Fexp being
O(n2U). This would not improve on the staged envelope
algorithm.
Consider now the distance d(e) for node e and how it
changes when computing fmax,shift,i.and fmax,exp,i. Let us call
d0

shift,i(e) and df
shift,i(e) the distances at the beginning and at

the end of flow shifting for iteration i. We define similarly
d0

exp,i(e) and df
exp,i(e).

Lemma 10: df

exp,i-1(e) ≤ d0
shift,i(e) and df

shift,i(e) ≤ d0
exp,i(e).

Proof: Between the end of flow expansion at iteration i-1
and the start of flow shifting at iteration i, the auxiliary

flow network changes through the elimination of nodes and
edges in FFFF (δδδδCi). Therefore, the new distances in the
remaining residual capacity network can only increase.
Since Shifti only adds edges σσσσ→→→→e, the distances in Shifti
must analogously increase and therefore df

exp,i-1(e) ≤
d0

shift,i(e). For Expand1 node distances can further increase
because flow reduction can only eliminate residual network
edges present in Shifti for fmax,shift,i. Also, from Lemma 3
the addition of F (δδδδRi)cannot reduce distances since it
cannot add any edge from an event in Shifti to one in δδδδRt(i).
Therefore, df

shift,i(e) ≤ d0
exp,i(e).!!!!

Note that the argument in Lemma 10 does not hold if
events are added in arbitrary order. In this case the addition
of edges can reduce the distance function of some node e
between a shifting and an expansion phase. In the worst
case, this may reduce the distance to one for each
application of maximum flow and therefore does not
improve on the staged algorithm.
Finally, consider reusing distance labeling across preflow-
pushes for shifting and expansion. d0

shift,i, d
f
shift,i, d

0
exp,i and

df
exp,i are the distance labelings at the beginning and end of

shifting and expansion. Assume also that the distance label
of a node that has not yet entered Expandi or Shifti is zero.

Lemma 11: d0

shift,I can be made equal to df
exp,i-1 for all

nodes in Shifti. Also, d0
exp,i can be made equal to df

shift,I for
all nodes in Expandi.
Proof: The distance label of a node remains valid when
edges are deleted or new edges are only added to enter it
from new nodes. Also, a distance function at node e must
be an upper bound of its labeling. From Lemma 10 we
know that the distance function can only increase from
Expandi-1 to Shifti and from Shifti to Expandi. Therefore
df

exp,i-1 and df
shift,i

 are valid choices respectively for d0
shift,i

and d0
exp,i..!!!!

We can now prove the main complexity result.

Theorem 12: For a large class of maximum flow
algorithms, Incremental_Resource_Envelope has time
complexity O(Maxflow(n, m, U)).
Proof: Assume we applied one of the maximum flow
algorithms in Table 1 to find the full maximum flow on the
entire resource increment flow network (e.g., to compute
the maximum envelope level over the entire time horizon
(Muscettola, 2002)) with cost O(Maxflow(n, m, U)). We
use Lemmas 9, 10 and 11 to prove that the cumulative cost
of using the same algorithms for flow shifting and flow
expansion is O(Maxflow(n, m, U)) for the same algorithm.
1. Labeling and Capacity scaling: Lemma 9 shows that the

worst case bound for the total flow moved during
shifting and expansion is at worst twice that for full
flow calculation. Also, at each iteration during shifting
and expansion, finding an augmenting path costs at
most m as for full flow calculation. Hence shifting and
expansion cost at most O(Maxflow(n, m, U)).

2. Successive shortest paths: the cost bound for each full
flow augmentation is an upper bound for that in
shifting and expansion. The algorithm’s complexity
also depends on the monotonic increase of the distance
function up to n after each elementary operation. Note
that until the deletion of a δδδδCi or a Pmax, a node’s
distance is bound by n as for the full flow. Monotonic
increase is guaranteed by the algorithm within each
shifting and expansion phase and by Lemma 10 across
phases. Hence, the cost is O(Maxflow(n, m, U)).

3. Preflow-push methods: the complexity is found through
amortized analysis (Goldberg and Tarjan, 1988),
relying on an appropriate potential function ΦΦΦΦ and on
the determination of its possible variations after the
applying a local operation (e.g., a saturating or a non-
saturating preflow push). One key observation is the
monotonic increase of each node’s distance label for
each local operation. Both for the incremental and for
the full flow this increase is bound by 2n−−−−1 and
Lemma 11 guarantees monotonic distance label
increase across phases. Note that, unlike for the full
flow, for shifting and expansion ΦΦΦΦ increases also at the
beginning of each shifting phase, when nodes are
activated by the creation of initial flow excesses.
However, a detailed amortized analysis (omitted for
space limitations) shows that this increase does not
affect the order of complexity of the shifting and
expansion phases that remains O(Maxflow(n, m, U)).

The worst case complexity of the other phases of
Incremental_Resource_Envelope besides shifting and
expansion are dominated by O(Maxflow(n, m, U). Flow
reduction is cumulatively O(nm). The total cost of
Extract_P_max and of incrementally constructing and
deleting the flow network, is 2 O(m). Finally the sorting of
events during initialization is O(n log n).!!!!

Optimized Preflow-Push Implementation

If the incremental algorithm is implemented using a
preflow-push method, the previous complexity analysis
indicates that, in order to reduce complexity, we need to
reuse the distance labeling function from the end of a
maximum flow computation to the start of the next.
A further optimization is possible. Consider the maximum
flow calculation on Shifti. During initialization, an excess
flow is loaded on each event e for each edge σσσσ→→→→e in Shifti.
We know that only a fraction of this excess flow may reach
ττττ. The remainder will be pushed back out of Shift1 during
flow shifting and then pushed again through the flow
network during flow reduction. In other words, this flow
travels twice through the network before being eliminated.
We can remove this duplication as flows. Assume that
instead of deleting the σσσσ→→→→e edges of FFFFi-1 when constructing
Shifti we delete instead the σσσσ→→→→e edges of Shifti after
having performed the appropriate excess loading needed to
perform flow shifting. In this case the flow that cannot be
shifted will be pushed back to the source in FFFFi-1,, i.e., FFFF (Ri),
instead making the additional O(nm) cost of flow reduction

unnecessary. Another possible optimization consists of
combining preflow-push through Shifti and Expandi by
connecting δδδδRi before running the shift/reduce preflow-
push. In this case the flow excess initializations of
contraction and expansion are combined and a single
preflow-push is run during phase i.
These optimizations do not affect asymptotic complexity
but may have a significant effect in practice. Empirical
studies will be needed to assess their actual usefulness.

Conclusions

We presented a new algorithm that efficiently computes
resource envelopes for flexible plans. The methods has
complexity O(Maxflow(n, m, U)) where n and m measure
the size of the activity plan and U measures the maximum
resource consumption or production of an activity. We are
currently experimenting with various implementations of
the methods. While we expect that for large problem sizes
the O(n) cost reduction will be evident, practical
improvements on smaller problems require careful design
of efficient and minimal data structures. We are also
addressing the second part of the cost/benefit equation for
envelopes by exploiting additional structural information
resulting from the method’s incrementality and designing
scheduling algorithms that use a minimal search space.

References
R.K. Ahuja, T.L. Magnati, J.N. Orlin, 1993. Network Flows,

Prentice Hall, NJ.
R.K. Ahuja, M. Kodialam, A.K. Mishra, J.B. Orlin, 1997.

Computational Investigations of Maximum Flow Algorithms,
European Journal of OR, Vol 97(3).

T.H. Cormen, C.E. Leiserson, R.L. Rivest, 1990. Introduction to
Algorithms. Cambridge, MA.

A.V. Goldberg, R.E. Tarjan, 1988. A New Approach to the
Maximum-Flow Problem. JACM, Vol. 35(4).

T.K.S. Kumar, 2003. Incremental Computation of Resource-
Envelopes in Producer-Consumer Models, Procs. of CP2003,
Kinsale, Ireland.

P. Laborie, 2001. Algorithms for Propagating Resource
Constraints in AI Planning and Scheduling: Existing
Approaches and New Results, Procs. ECP 2001, Spain.

P. Morris, N. Muscettola, T. Vidal, 2001. Dynamic Control of
Plans with Temporal Uncertainty, in Procs. of IJCAI 2001,
Seattle, WA.

N. Muscettola, 2002. Computing the Envelope for Stepwise-
Constant Resource Allocations, Procs. of CP2002, Ithaca,
NY.

N. Pollicella, S.F. Smith, A. Cesta, A. Oddi, 2003. Steps toward
Computing Flexible Schedules, Procs. of Online-2003
Workshop at CP 2003, Kinsale, Ireland,
http://www.cs.ucc.ie/~kb11/CP2003Online/onlineProceedings.pdf

